• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Towards a multisensor station for automated biodiversity monitoring
 
  • Details
  • Full
Options
2022
Journal Article
Title

Towards a multisensor station for automated biodiversity monitoring

Abstract
Rapid changes of the biosphere observed in recent years are caused by both small and large scale drivers, like shifts in temperature, transformations in land-use, or changes in the energy budget of systems. While the latter processes are easily quantifiable, documentation of the loss of biodiversity and community structure is more difficult. Changes in organismal abundance and diversity are barely documented. Censuses of species are usually fragmentary and inferred by often spatially, temporally and ecologically unsatisfactory simple species lists for individual study sites. Thus, detrimental global processes and their drivers often remain unrevealed. A major impediment to monitoring species diversity is the lack of human taxonomic expertise that is implicitly required for large-scale and fine-grained assessments. Another is the large amount of personnel and associated costs needed to cover large scales, or the inaccessibility of remote but nonetheless affected areas. To overcome these limitations we propose a network of Automated Multisensor stations for Monitoring of species Diversity (AMMODs) to pave the way for a new generation of biodiversity assessment centers. This network combines cutting-edge technologies with biodiversity informatics and expert systems that conserve expert knowledge. Each AMMOD station combines autonomous samplers for insects, pollen and spores, audio recorders for vocalizing animals, sensors for volatile organic compounds emitted by plants (pVOCs) and camera traps for mammals and small invertebrates. AMMODs are largely self-containing and have the ability to pre-process data (e.g. for noise filtering) prior to transmission to receiver stations for storage, integration and analyses. Installation on sites that are difficult to access require a sophisticated and challenging system design with optimum balance between power requirements, bandwidth for data transmission, required service, and operation under all environmental conditions for years. An important prerequisite for automated species identification are databases of DNA barcodes, animal sounds, for pVOCs, and images used as training data for automated species identification. AMMOD stations thus become a key component to advance the field of biodiversity monitoring for research and policy by delivering biodiversity data at an unprecedented spatial and temporal resolution.
Author(s)
Wägele, J.W.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Bodesheim, P.
Friedrich-Schiller-Universität Jena
Bourlat, S.J.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Denzler, J.
Friedrich-Schiller-Universität Jena
Diepenbroek, M.
MARUM - Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten
Fonseca, V.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Frommolt, K.-H.
Museum für Naturkunde
Geiger, M.F.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Gemeinholzer, B.
Universität Kassel
Glöckner, F.O.
Alfred-Wegener-Institut
Haucke, T.
Universität Bonn
Kirse, A.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Kölpin, A.
Hamburg University of Technology
Kostadinov, I.
Max Planck In­sti­tute for Mar­ine Mi­cro­bi­o­logy
Kühl, H.S.
German Center for Integrative Biodiversity Research (iDiv) Germany
Kurth, Frank  
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Lasseck, M.
Museum für Naturkunde
Liedke, S.
ION-GAS GmbH
Losch, F.
Universität Bonn
Müller, S.
Universität Freiburg
Petrovskaya, N.
University of Birmingham
Piotrowski, K.
Institut fur innovative Mikroelektronik (IHP)
Radig, B.
Fakultät für Informatik, Technische Universität München
Scherber, C.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Schoppmann, L.
Hamburg University of Technology
Schulz, J.
Universität Oldenburg
Steinhage, V.
Universität Bonn
Tschan, G.F.
Leibniz-Institut zur Analyse des Biodiversitätswandels
Vautz, W.
ION-GAS GmbH
Velotto, D.
MARUM - Zen­trum für Ma­ri­ne Um­welt­wis­sen­schaf­ten
Weigend, M.
Universität Bonn
Wildermann, S.
Friedrich-Alexander-Universität Erlangen-Nürnberg
Journal
Basic and applied ecology  
Open Access
DOI
10.1016/j.baae.2022.01.003
Additional link
Full text
Language
English
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE  
Keyword(s)
  • AMMOD

  • Artificial intelligence

  • Bioacoustic monitoring

  • Biodiversity monitoring

  • Computer science

  • Computer vision

  • Metabarcoding

  • Pattern recognition

  • Visual monitoring

  • Volatile organic compounds

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024