• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. The role of nanoparticles on topographic cross-talk in electric force microscopy and magnetic force microscopy
 
  • Details
  • Full
Options
2020
Zeitschriftenaufsatz
Titel

The role of nanoparticles on topographic cross-talk in electric force microscopy and magnetic force microscopy

Abstract
Topographic cross‐talk is still an issue in magnetic force microscopy (MFM) as well as in electric force microscopy (EFM). Using interleave mode measurements, combining a first topographic scan with a second scan in a certain distance from the surface following the topography from the first scan, capacitive coupling effects occur while measuring nanoparticles. This article focuses on the influence of the dielectric constant of polystyrene nanoparticles in interleave mode MFM measurements. To investigate the contribution of the capacitive coupling effect to the signal, nonmagnetic polystyrene nanoparticles are investigated. The tip‐substrate distance change above the nanoparticle leads to a positive phase shift in MFM signals. Simulations and fits to the experimental data allow the investigation of the influence of the dielectric constant of the nanoparticles on topographic effects in interleave mode measurements in general.
Author(s)
Fuhrmann, Marc
Krivcov, Alexander
Musyanovych, Anna
Thoelen, Roland
Möbius, Hildegard
Zeitschrift
Physica status solidi. A
Thumbnail Image
DOI
10.1002/pssa.201900828
Externer Link
Externer Link
Language
Englisch
google-scholar
IMM
Tags
  • capacitive coupling

  • dielectric constant o...

  • electric force micros...

  • magnetic force micros...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022