• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Thin-film sensors for data-driven quality control in thermoplastic injection molding
 
  • Details
  • Full
Options
July 2025
Conference Paper
Title

Thin-film sensors for data-driven quality control in thermoplastic injection molding

Abstract
Digitalization is a key step towards utilizing comprehensive process knowledge, which is required for enabling energy-efficient and sustainable manufacturing process chains. Injection molding of polymers is a highly scalable process; however, conventional manufacturing ramp-ups currently result in a significant amount of scrap before finding suitable process parameters. Machine learning-based data analysis is a versatile and indispensable tool for improving process parameters and enabling automated real-time quality monitoring. This research focuses on the development and use of thin-film sensors for in-process measurement of temperature and melt flow directly in the cavity. The sensors are directly integrated on tool surfaces, highly wear-resistant, and only a few micrometers thick. The study covers the integration of sensor inserts and fabrication using vacuum-based deposition techniques like physical and chemical vapor deposition. A small batch test showed that sensors combined with a machine learning algorithm on an edge device can determine real-time quality of each component.
Author(s)
Rekowski, Martin  
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Timmann, Frederic
TU Braunschweig, Institut für Werkzeugmaschinen und Fertigungstechnik -IWF-  
Hupfeld, Henning
TU Braunschweig, Institut für Werkzeugmaschinen und Fertigungstechnik -IWF-  
Schott, Anna  
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Hürkamp, André
TU Braunschweig, Institut für Werkzeugmaschinen und Fertigungstechnik -IWF-  
Dröder, Klaus
TU Braunschweig, Institut für Werkzeugmaschinen und Fertigungstechnik -IWF-  
Herrmann, Christoph  
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Mainwork
Production at the Leading Edge of Technology 2024  
Project(s)
Automation of Network edge Infrastructure & Applications with aRtificiAl intelligence - AI-NET-ANIARA -; Teilvorhaben: Automatisierung der Netzwerk Edge Infrastruktur & Anwendungen mit Artificial Intelligence  
Funder
Bundesministerium für Forschung, Technologie und Raumfahrt
Conference
German Academic Association for Production Technology (WGP Congress) 2024  
DOI
10.1007/978-3-031-86893-1_41
Language
English
Fraunhofer-Institut für Schicht- und Oberflächentechnik IST  
Keyword(s)
  • in-process temperature measurement

  • injection molding

  • machine learning

  • process monitoring

  • thin-film sensor

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024