• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Adiabatic Quantum Computing for Max-Sum Diversification
 
  • Details
  • Full
Options
2020
Conference Paper
Titel

Adiabatic Quantum Computing for Max-Sum Diversification

Abstract
The combinatorial problem of max-sum diversification asks for a maximally diverse subset of a given set of data. Here, we show that it can be expressed as an Ising energy minimization problem. Given this result, max-sum diversification can be solved on adiabatic quantum computers and we present proof of concept simulations which support this claim. This, in turn, suggests that quantum computing might play a role in data mining. We therefore discuss quantum computing in a tutorial like manner and elaborate on its current strengths and weaknesses for data analysis.
Author(s)
Bauckhage, Christian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Sifa, Rafet
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Wrobel, Stefan
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Hauptwerk
SIAM International Conference on Data Mining 2020. Proceedings. Online resource
Konferenz
SIAM International Conference on Data Mining 2020
Thumbnail Image
DOI
10.1137/1.9781611976236.39
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022