• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Condition monitoring of drive trains by data fusion of acoustic emission and vibration sensors
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Condition monitoring of drive trains by data fusion of acoustic emission and vibration sensors

Abstract
Early damage detection and classification by condition monitoring systems is crucial to enable predictive maintenance of manufacturing systems and industrial facilities. The data analysis can be improved by applying machine learning algorithms and fusion of data from heterogenous sensors. This paper presents an approach for a step-wise integration of classifications gained from vibration and acoustic emission sensors, in order to combine the information from signals acquired in the low and high frequency range. A test rig comprising a drive train and bearings with small artificial damages is used for acquisition of experimental data. The results indicate that an improvement of damage classification can be obtained using the proposed algorithm of combining classifiers for vibrations and acoustic emission.
Author(s)
Mey, Oliver  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Schneider, André  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Enge-Rosenblatt, Olaf  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Mayer, Dirk  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Schmidt, Christian
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Klein, Samuel  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Herrmann, Hans-Georg  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Mainwork
1st IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0, ARCI 2021. Proceedings  
Conference
Winter Conference on Automation, Robotics & Communications for Industry 4.0 (ARCI) 2021  
Link
Link
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP  
Keyword(s)
  • condition monitoring

  • vibration

  • acoustic emission

  • drive train

  • data fusion

  • machine learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024