• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access
 
  • Details
  • Full
Options
2022
Conference Paper
Title

GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access

Abstract
Non-orthogonal multiple access (NOMA) is an interesting technology that enables massive connectivity as required in future 5G and 6G networks. While purely linear processing already achieves good performance in NOMA systems, in certain scenarios, non-linear processing is mandatory to ensure acceptable performance. In this paper, we propose a neural network architecture that combines the advantages of both linear and non-linear processing. Its real-time detection performance is demonstrated by a highly efficient implementation on a graphics processing unit (GPU). Using real measurements in a laboratory environment, we show the superiority of our approach over conventional methods.
Author(s)
Schäufele, Daniel
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Marcus, Guillermo
Binder, Nikolaus
Mehlhose, Matthias  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keller, Alexander
Stanczak, Slawomir  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Mainwork
30th European Signal Processing Conference, EUSIPCO 2022. Proceedings  
Conference
European Signal Processing Conference 2022  
DOI
10.23919/EUSIPCO55093.2022.9909865
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keyword(s)
  • CUDA

  • GPU

  • machine learning

  • massively parallel architectures

  • MIMO

  • multi-user detection

  • neural networks

  • NOMA

  • wireless communication

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024