• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Measuring the lesion load of multiple sclerosis patients within the corticospinal tract
 
  • Details
  • Full
Options
2015
Conference Paper
Title

Measuring the lesion load of multiple sclerosis patients within the corticospinal tract

Abstract
In this paper we present a framework for reliable determination of the lesion load within the corticospinal tract (CST) of multiple sclerosis patients. The basis constitutes a probabilistic fiber tracking approach which checks possible parameter intervals on the fly using an anatomical brain atlas. By exploiting the range of those intervals, the algorithm is able to resolve fiber crossings and to determine the CST in its full entity although it can use a simple diffusion tensor model. Another advantage is its short running time, tracking the CST takes less than a minute. For segmenting the lesions we developed a semi-automatic approach. First, a trained classifier is applied to multimodal MRI data (T1/FLAIR) where the spectrum of lesions has been determined in advance by a clustering algorithm. This leads to an automatic detection of the lesions which can be manually corrected afterwards using a threshold-based approach. For evaluation we scanned 46 MS patients and 16 healthy controls. Fiber tracking has been performed using our novel fiber tracking and a standard deflection based algorithm. Regression analysis of the old and new version of the algorithm showed a highly significant superiority of the new algorithm for disease duration. Additionally, a low correlation between old and new approach supports the observation that standard DTI fiber tracking is not always able to track and quantify the CST reliably.
Author(s)
Klein, J.
Hanken, K.
Koceva, J.
Hildebrandt, H.
Hahn, H.K.
Mainwork
Medical imaging 2015. Image processing. Pt.1  
Conference
Conference "Medical Imaging - Image Processing" 2015  
DOI
10.1117/12.2080765
Language
English
Fraunhofer-Institut für Digitale Medizin MEVIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024