• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Alternating triangular schemes for convection-diffusion problems
 
  • Details
  • Full
Options
2016
Journal Article
Title

Alternating triangular schemes for convection-diffusion problems

Abstract
Explicit-implicit approximations are used to approximate nonstationary convection-diffusion equations in time. In unconditionally stable two-level schemes, diffusion is taken from the upper time level, while convection, from the lower layer. In the case of three time levels, the resulting explicit-implicit schemes are second-order accurate in time. Explicit alternating triangular (asymmetric) schemes are used for parabolic problems with a self-adjoint elliptic operator. These schemes are unconditionally stable, but conditionally convergent. Three-level modifications of alternating triangular schemes with better approximating properties were proposed earlier. In this work, two- and three-level alternating triangular schemes for solving boundary value problems for nonstationary convection-diffusion equations are constructed. Numerical results are presented for a two-dimensional test problem on triangular meshes, such as Delaunay triangulations and Voronoi diagrams.
Author(s)
Vabishchevich, P.N.
Zakharov, P.E.
Journal
Computational mathematics and mathematical physics  
DOI
10.1134/S096554251604014X
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024