Options
2023
Conference Paper
Title
ExFaceGAN: Exploring Identity Directions in GAN’s Learned Latent Space for Synthetic Identity Generation
Abstract
Deep generative models have recently presented impressive results in generating realistic face images of random synthetic identities. To generate multiple samples of a certain synthetic identity, previous works proposed to disentangle the latent space of GANs by incorporating additional supervision or regularization, enabling the manipulation of certain attributes. Others proposed to disentangle specific factors in unconditional pretrained GANs latent spaces to control their output, which also requires supervision by attribute classifiers. Moreover, these attributes are entangled in GAN’s latent space, making it difficult to manipulate them without affecting the identity information. We propose in this work a framework, ExFaceGAN, to disentangle identity information in pretrained GANs latent spaces, enabling the generation of multiple samples of any synthetic identity. Given a reference latent code of any synthetic image and latent space of pretrained GAN, our ExFaceGAN learns an identity directional boundary that disentangles the latent space into two sub-spaces, with latent codes of samples that are either identity similar or dissimilar to a reference image. By sampling from each side of the boundary, our ExFaceGAN can generate multiple samples of synthetic identity without the need for designing a dedicated architecture or supervision from attribute classifiers. We demonstrate the generalizability and effectiveness of ExFaceGAN by integrating it into learned latent spaces of three SOTA GAN approaches. As an example of the practical benefit of our ExFaceGAN, we empirically prove that data generated by ExFaceGAN can be successfully used to train face recognition models (https://github.com/fdbtrs/ExFaceGAN).
Author(s)
Funder
Bundesministerium für Bildung und Forschung -BMBF-
Keyword(s)
Branche: Information Technology
Research Line: Computer vision (CV)
Research Line: Human computer interaction (HCI)
Research Line: Machine learning (ML)
LTA: Machine intelligence, algorithms, and data structures (incl. semantics)
LTA: Generation, capture, processing, and output of images and 3D models
Biometrics
Face recognition
Machine learning
Generative Adversarial Networks (GAN)
Deep learning
ATHENE