• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks
 
  • Details
  • Full
Options
2021
Journal Article
Title

Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks

Abstract
Anonymization and data sharing are crucial for privacy protection and acquisition of large datasets for medical image analysis. This is a big challenge, especially for neuroimaging. Here, the brain's unique structure allows for re-identification and thus requires non-conventional anonymization. Generative adversarial networks (GANs) have the potential to provide anonymous images while preserving predictive properties. Analyzing brain vessel segmentation, we trained 3 GANs on time-of-flight (TOF) magnetic resonance angiography (MRA) patches for image-label generation: 1) Deep convolutional GAN, 2) Wasserstein-GAN with gradient penalty (WGAN-GP) and 3) WGAN-GP with spectral normalization (WGAN-GP-SN). The generated image-labels from each GAN were used to train a U-net for segmentation and tested on real data. Moreover, we applied our synthetic patches using transfer learning on a second dataset. For an increasing number of up to 15 patients we evaluated the model performa nce on real data with and without pre-training. The performance for all models was assessed by the Dice Similarity Coefficient (DSC) and the 95th percentile of the Hausdorff Distance (95HD). Comparing the 3 GANs, the U-net trained on synthetic data generated by the WGAN-GP-SN showed the highest performance to predict vessels (DSC/95HD 0.85/30.00) benchmarked by the U-net trained on real data (0.89/26.57). The transfer learning approach showed superior performance for the same GAN compared to no pre-training, especially for one patient only (0.91/24.66 vs. 0.84/27.36). In this work, synthetic image-label pairs retained generalizable information and showed good performance for vessel segmentation. Besides, we showed that synthetic patches can be used in a transfer learning approach with independent data. This paves the way to overcome the challenges of scarce data and anonymization in medical imaging.
Author(s)
Kossen, T.
Subramaniam, P.
Madai, V.I.
Hennemuth, A.
Hildebrand, K.
Hilbert, A.
Sobesky, J.
Livne, M.
Galinovic, I.
Khalil, A.A.
Fiebach, J.B.
Frey, D.
Journal
Computers in biology and medicine  
DOI
10.1016/j.compbiomed.2021.104254
Language
English
Fraunhofer-Institut für Digitale Medizin MEVIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024