• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Quantifying Uncertainty in Multivariate Time Series Pre-Processing
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Quantifying Uncertainty in Multivariate Time Series Pre-Processing

Abstract
In multivariate time series analysis, pre-processing is integral for enabling analysis, but inevitably introduces uncertainty into the data. Enabling the assessment of the uncertainty and allowing uncertainty-aware analysis, the uncertainty needs to be quantified initially. We address this challenge by formalizing the quantification of uncertainty for multivariate time series preprocessing. To tackle the large design space, we elaborate key considerations for quantifying and aggregating uncertainty. We provide an example how the quantified uncertainty is used in a multivariate time series pre-processing application to assess the effectiveness of pre-processing steps and adjust the pipeline to minimize the introduction of uncertainty.
Author(s)
Bors, Christian
TU Wien
Bernard, Jürgen
TU Darmstadt GRIS
Bögl, Markus
TU Wien
Gschwandtner, Theresia
TU Wien
Kohlhammer, Jörn  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Miksch, Silvia
TU Wien
Mainwork
EuroVA 2019, EuroVis Workshop on Visual Analytics  
Conference
Workshop on Visual Analytics (EuroVA) 2019  
DOI
10.2312/eurova.20191121
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Lead Topic: Visual Computing as a Service

  • Research Line: Computer graphics (CG)

  • Research Line: Modeling (MOD)

  • multivariate time series

  • uncertainty visualization

  • Visual analytics

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024