• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Optimal control simulations of two finger grasping
 
  • Details
  • Full
Options
2018
Journal Article
Title

Optimal control simulations of two finger grasping

Abstract
Grasping is a complex human action simulated here as an optimal control problem with a three‐dimensional rigid multibody model composed of two fingers along with the wrist and the forearm. The dynamics is described by a hybrid dynamical system with a given switching sequence (reaching or tree kinematic structure and grasping or closed loop contacts) and unknown switching times. The optimal control problem is solved using the direct transcription method DMOCC (discrete mechanics and optimal control), see [1], leading to a structure preserving approximation. An objective function such as the distance of contact points from the grasped object center of gravity or the sum of normal contact force is minimised subject to the discrete Euler‐Lagrange equations, boundary conditions and path constraints. The object dynamics is also taken into account.
Author(s)
Phutane, U.
University of Erlangen-Nuremberg
Roller, M.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Leyendecker, S.
University of Erlangen-Nuremberg
Journal
Proceedings in applied mathematics and mechanics. PAMM  
Conference
International Association of Applied Mathematics and Mechanics (GAMM Annual Meeting) 2018  
DOI
10.1002/pamm.201800358
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024