• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. A Generic Trace Ordering Framework for Incremental Process Discovery
 
  • Details
  • Full
Options
2022
Conference Paper
Title

A Generic Trace Ordering Framework for Incremental Process Discovery

Abstract
Executing operational processes generates valuable event data in organizations’ information systems. Process discovery describes the learning of process models from such event data. Incremental process discovery algorithms allow learning a process model from event data gradually. In this context, process behavior recorded in event data is incrementally fed into the discovery algorithm that integrates the added behavior to a process model under construction. In this paper, we investigate the open research question of the impact of the ordering of incrementally selected process behavior on the quality, i.e., recall and precision, of the learned process models. We propose a framework for defining ordering strategies for traces, i.e., observed process behavior, for incremental process discovery. Further, we provide concrete instantiations of this framework. We evaluate different trace-ordering strategies on real-life event data. The results show that trace-ordering strategies can significantly improve the quality of the learned process models.
Author(s)
Schuster, Daniel  orcid-logo
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Domnitsch, E.
Rheinisch-Westfälische Technische Hochschule Aachen
Zelst, Sebastiaan van  
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Aalst, Wil van der
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Mainwork
Advances in intelligent data analysis XX  
Conference
International Symposium on Intelligent Data Analysis 2022  
DOI
10.1007/978-3-031-01333-1_21
Language
English
Fraunhofer-Institut für Angewandte Informationstechnik FIT  
Keyword(s)
  • Ordering effects

  • Process discovery

  • Process mining

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024