• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Evaluation of anomaly detection of an autoencoder based on maintenace information and SCADA-data
 
  • Details
  • Full
Options
2020
Journal Article
Title

Evaluation of anomaly detection of an autoencoder based on maintenace information and SCADA-data

Abstract
The usage of machine learning techniques is widely spread and has also been implemented in the wind industry in the last years. Many of these techniques have shown great success but need to constantly prove the expectation of functionality. This paper describes a new method to monitor the health of a wind turbine using an undercomplete autoencoder. To evaluate the health monitoring quality of the autoencoder, the number of anomalies before an event has happened are to be considered. The results show that around 35% of all historical events that have resulted into a failure show many anomalies. Furthermore, the wind turbine subsystems which are subject to good detectability are the rotor system and the control system. If only one third of the service duties can be planned in advance, and thereby the scheduling time can be reduced, huge cost saving potentials can be seen.
Author(s)
Lutz, Marc-Alexander  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Vogt, Stephan  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Berkhout, Volker  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Faulstich, Stefan  
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Dienst, S.
Steinmetz, U.
Gück, Christian
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
Ortega, A.
Journal
Energies  
Open Access
DOI
10.3390/en13051063
Language
English
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024