• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Do Multilingual Large Language Models Mitigate Stereotype Bias?
 
  • Details
  • Full
Options
August 16, 2024
Conference Paper
Title

Do Multilingual Large Language Models Mitigate Stereotype Bias?

Abstract
While preliminary findings indicate that multilingual LLMs exhibit reduced bias compared to monolingual ones, a comprehensive understanding of the effect of multilingual training on bias mitigation, is lacking. This study addresses this gap by systematically training six LLMs of identical size (2.6B parameters) and architecture: five monolingual models (English, German, French, Italian, and Spanish) and one multilingual model trained on an equal distribution of data across these languages, all using publicly available data. To ensure robust evaluation, standard bias benchmarks were automatically translated into the five target languages and verified for both translation quality and bias preservation by human annotators. Our results consistently demonstrate that multilingual training effectively mitigates bias. Moreover, we observe that multilingual models achieve not only lower bias but also superior prediction accuracy when compared to monolingual models with the same amount of training data, model architecture, and size.
Author(s)
Nie, Shangrui
Universität Bonn  
Fromm, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Welch, Charles
Universität Bonn  
Görge, Rebekka
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Karimi, Akbar
Universität Bonn  
Plepi, Joan
Universität Bonn  
Mowmita, Nazia Afsan
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Flores-Herr, Nicolas  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ali, Mehdi  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Flek, Lucie
Universität Bonn  
Mainwork
C3NLP 2024, the 2nd Workshop on Cross-Cultural Considerations in NLP. Proceedings of the Workshop  
Conference
Workshop on Cross-Cultural Considerations in NLP 2024  
DOI
10.18653/v1/2024.c3nlp-1.6
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Computational linguistics

  • Evaluation standard

  • Language model

  • Low bias

  • Model size

  • Modeling architecture

  • Multilingual trainings

  • Prediction accuracy

  • Target language

  • Training data

  • Translation quality

  • Translation (languages)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024