• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Leveraging string kernels for malware detection
 
  • Details
  • Full
Options
2013
Conference Paper
Title

Leveraging string kernels for malware detection

Abstract
Signature-based malware detection will always be a step behind as novel malware cannot be detected. On the other hand, machine learning-based methods are capable of detecting novel malware but classification is frequently done in an offline or batched manner and is often associated with time overheads that make it impractical. We propose an approach that bridges this gap. This approach makes use of a support vector machine (SVM) to classify system call traces. In contrast to other methods that use system call traces for malware detection, our approach makes use of a string kernel to make better use of the sequential information inherent in a system call trace. By classifying system call traces in small sections and keeping a moving average over the probability estimates produced by the SVM, our approach is capable of detecting malicious behavior online and achieves great accuracy.
Author(s)
Pfoh, J.
Schneider, C.
Eckert, C.
Mainwork
Network and system security. Proceedings  
Conference
International Conference on Network and System Security (NSS) 2013  
DOI
10.1007/978-3-642-38631-2_16
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024