• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. 4-(4-Chlorophenyl)thiazol-2-amines as pioneers of potential neurodegenerative therapeutics with anti-inflammatory properties based on dual DNase I and 5-LO inhibition
 
  • Details
  • Full
Options
2020
Journal Article
Title

4-(4-Chlorophenyl)thiazol-2-amines as pioneers of potential neurodegenerative therapeutics with anti-inflammatory properties based on dual DNase I and 5-LO inhibition

Abstract
Eleven new 4-(4-chlorophenyl)thiazol-2-amines were synthesized and, together with nine known derivatives, evaluated in vitro for inhibitory properties towards bovine pancreatic DNase I. Three compounds (18-20) inhibited DNase I with IC50 values below 100 µM, with compound 19 being the most potent (IC50 = 79.79 µM). Crystal violet, used as a positive control in the absence of a ""golden standard"", exhibited almost 5-fold weaker DNase I inhibition. Pharma/E-State RQSAR models clarified critical structural fragments relevant for DNase I inhibition. Molecular docking and molecular dynamics simulation defined the 4-(4-chlorophenyl)thiazol-2-amines interactions with the most important catalytic residues of DNase I. Ligand-based pharmacophore modeling and virtual screening confirmed the chemical features of 4-(4-chlorophenyl)thiazol-2-amines required for DNase I inhibition and proved the absence of structurally similar molecules in available databases. Compounds 18-20 have been shown as very potent 5-LO inhibitors with nanomolar IC50 values obtained in cell-free assay, with compound 20 being the most potent (IC50 = 50 nM). Molecular docking and molecular dynamics simulations into the binding site of 5-LO enzyme allowed us to clarify the binding mode of these dual DNase I/5-LO inhibitors. It was shown that compounds 18-20 uniquely show interactions with histidine residues in the catalytic site of DNase I and 5-LO enzyme. In the absence of potent organic DNase I inhibitors, compounds 18-20 represent a good starting point for the development of novel Alzheimer's therapeutics based on dual 5-LO and DNase I inhibition, which also have anti-inflammatory properties.
Author(s)
Smelcerovic, A.
Zivkovic, A.
Ilic, B.S.
Kolarevic, A.
Hofmann, B.
Steinhilber, D.
Stark, H.
Journal
Bioorganic chemistry  
DOI
10.1016/j.bioorg.2019.103528
Language
English
Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024