• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Fast estimation of intrinsic volumes in 3D gray value images
 
  • Details
  • Full
Options
2015
Conference Paper
Title

Fast estimation of intrinsic volumes in 3D gray value images

Abstract
The intrinsic volumes or their densities are versatile structural characteristics that can be estimated efficiently from digital image data, given a segmentation yielding the structural component of interest as foreground. In this contribution, Ohser's algorithm is generalized to operate on integer gray value images. The new algorithm derives the intrinsic volumes for each possible global gray value threshold in the image. It is highly efficient since it collects all neccesary structural information in a single pass through the image. The novel algorithm is well suited for computing the Minkowski functions of the parallel body if combined with the Euclidean distance transformation. This application scenario is demonstrated by means of computed tomography image data of polar ice samples. Moreover, the algorithm is applied to the problem of threshold selection in computed tomography images of material microstructures.
Author(s)
Godehardt, M.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Jablonski, A.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Wirjadi, O.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Schladitz, K.
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Mainwork
Mathematical morphology and its applications to signal and image processing. 12th international symposium, ISMM 2015  
Conference
International Symposium on Mathematical Morphology (ISMM) 2015  
DOI
10.1007/978-3-319-18720-4_55
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024