• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Chemical aging of large-scale randomly rough frictional contacts
 
  • Details
  • Full
Options
2018
Journal Article
Title

Chemical aging of large-scale randomly rough frictional contacts

Abstract
It has been shown that contact aging due to chemical reactions in single asperity contacts can have a significant effect on friction. However, it is currently unknown how chemically induced contact aging of friction depends on roughness that is typically encountered in macroscopic rough contacts. Here we develop an approach that brings together a kinetic Monte Carlo model of chemical aging with a contact mechanics model of rough surfaces based on the boundary element method to determine the magnitude of chemical aging in silica-silica contacts with random roughness. Our multiscale model predicts that chemical aging for randomly rough contacts has a logarithmic dependence on time. It also shows that friction aging switches from a linear to a nonlinear dependence on the applied load as the load increase. We discover that surface roughness affects the aging behavior primarily by modifying the real contact area and the local contact pressure, whereas the effect of contact morphology is relatively small. Our results demonstrate how understanding of chemical aging can be translated from studies of single asperity contacts to macroscopic rough contacts.
Author(s)
Li, Z.
Pastewka, L.
Szlufarska, I.
Journal
Physical Review. E  
Funder
Deutsche Forschungsgemeinschaft DFG  
Open Access
DOI
10.1103/PhysRevE.98.023001
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024