• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A Simple Model Setup Using Spray-Drying Principles and Fluorescent Silica Nanoparticles to Evaluate the Efficiency of Facemask Materials in Terms of Virus Particle Retention
 
  • Details
  • Full
Options
2021
Journal Article
Title

A Simple Model Setup Using Spray-Drying Principles and Fluorescent Silica Nanoparticles to Evaluate the Efficiency of Facemask Materials in Terms of Virus Particle Retention

Abstract
Herein, a simple model setup is presented to spray fine liquid droplets containing nanoparticles in an air stream transporting this toward a filter material. The nanoparticles are made of silica and tagged with a fluorescent dye in order to render the trace of the particles easily visible. The silica nanoparticles, in a first approximation, mimic virus (severe acute respiratory syndrome coronavirus 2) particles. The setup is used to evaluate different tissues, nowadays, in times of the coronavirus pandemic, commonly used as facemasks, with regard to their particle retention capability. The setup enables adjusting different ""breathing scenarios"" by adjusting the gas flow speed and, thereby, to compare the filter performance for these scenarios. The effective penetration of particles can be monitored via fluorescence intensity measurements and is visualized via scanning electron micrographs and photographs under UV light. Ultimately, a strong increase of particle penetration in various mask materials as function of flow speed of the droplets is observed and an ultimate retention is only observed for FFP3 and FFP2 masks.
Author(s)
Oppmann, Maximilian  
Fraunhofer-Institut für Silicatforschung ISC  
Wenderoth, Sarah
Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University, Würzburg, Germany
Ballweg, Thomas  
Fraunhofer-Institut für Silicatforschung ISC  
Schug, Benedikt  
Fraunhofer-Institut für Silicatforschung ISC  
Mandel, Karl
Fraunhofer-Institut für Silicatforschung ISC  
Journal
Advanced materials technologies  
Open Access
DOI
10.1002/admt.202100235
Language
English
Fraunhofer-Institut für Silicatforschung ISC  
Keyword(s)
  • aerosol

  • Corona

  • COVID-19

  • facemask

  • FFP2

  • mask test

  • virus barrier

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024