• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Optimal control simulations of two-finger grasps
 
  • Details
  • Full
Options
2022
Journal Article
Title

Optimal control simulations of two-finger grasps

Abstract
Grasping is a complex human activity performed with readiness through a complicated mechanical system as an end effector, i.e. the human hand. Here, we apply a direct transcription method of discrete mechanics and optimal control with constraints (DMOCC) to reproduce human-level grasping of an object with a three-dimensional model of the hand, actuated through joint control torques. The equations of motions describing the hand dynamics are derived from a discrete variational principle based on a discrete action functional, which gives the time integrator structure-preserving properties. The grasping action is achieved through a series of constraints, which generate a hybrid dynamical system with a given switching sequence and unknown switching times. To determine a favourable trajectory for grasping action, we solve an optimal control problem (OCP) with different physiological objectives subject to discrete Euler-Lagrange equations, boundary conditions and path constraints.
Author(s)
Phutane, U.
Roller, M.
Leyendecker, S.
Journal
Mechanism and machine theory  
DOI
10.1016/j.mechmachtheory.2021.104508
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024