• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Data Driven Joining Models for Simulation-based Assembly Learning
 
  • Details
  • Full
Options
2021
Journal Article
Title

Data Driven Joining Models for Simulation-based Assembly Learning

Abstract
Novel approaches to robot programming using advanced combinations of Machine Learning and simulation can flexibly adapt to changes and offer promising solutions, even to complex tasks such as assembly. However, feasible training data must model the underlying assembly process adequately. Therefore, detailed physical process models are needed, to increase the accuracy of the simulation. The presented work focusses on data-driven physical models for the prediction of joining forces during the assembly of snap-fits in electrical cabinet assembly using Machine Learning. State-of-the-art Linear Regression models and Deep Neural Networks are trained using data from a physical experimental setup as well as evaluated and compared afterwards.
Author(s)
Lämmle, Arik  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Krauß, Jonas
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Awad, Ramez  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Journal
Procedia CIRP  
Conference
Conference on Manufacturing Systems (CMS) 2021  
Open Access
DOI
10.1016/j.procir.2021.11.083
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • maschinelles Lernen

  • Montageautomatisierung

  • Befestigungselement

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024