• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. On Dirichlet eigenvalues of regular polygons
 
  • Details
  • Full
Options
October 15, 2024
Journal Article
Title

On Dirichlet eigenvalues of regular polygons

Abstract
We prove that the first Dirichlet eigenvalue of a regular N-gon of area π has an asymptotic expansion of the form λ1(1+∑n≥3[Formula presented]) as N→∞, where λ1 is the first Dirichlet eigenvalue of the unit disk and Cn are polynomials whose coefficients belong to the space of multiple zeta values of weight n and conjecture that their coefficients lie in the space of single-valued multiple zeta values. We also explicitly compute these polynomials for all n≤14.
Author(s)
Berghaus, David
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Monien, Hartmut
Bethe Center, Bonn University
Radchenko, Danylo V.
Laboratoire Paul Painlevé, Université de Lille, France
Journal
Journal of mathematical analysis and applications  
Open Access
File(s)
Download (423.95 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1016/j.jmaa.2024.128460
10.24406/h-472817
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • Asymptotics

  • Dirichlet eigenvalues

  • Multiple zeta values

  • Regular polygons

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024