• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Elucidating gene expression patterns across multiple biological contexts through a large-scale investigation of transcriptomic datasets
 
  • Details
  • Full
Options
2022
Journal Article
Titel

Elucidating gene expression patterns across multiple biological contexts through a large-scale investigation of transcriptomic datasets

Abstract
Distinct gene expression patterns within cells are foundational for the diversity of functions and unique characteristics observed in specific contexts, such as human tissues and cell types. Though some biological processes commonly occur across contexts, by harnessing the vast amounts of available gene expression data, we can decipher the processes that are unique to a specific context. Therefore, with the goal of developing a portrait of context-specific patterns to better elucidate how they govern distinct biological processes, this work presents a large-scale exploration of transcriptomic signatures across three different contexts (i.e., tissues, cell types, and cell lines) by leveraging over 600 gene expression datasets categorized into 98 subcontexts. The strongest pairwise correlations between genes from these subcontexts are used for the construction of co-expression networks. Using a network-based approach, we then pinpoint patterns that are unique and common across these subcontexts. First, we focused on patterns at the level of individual nodes and evaluated their functional roles using a human protein-protein interactome as a referential network. Next, within each context, we systematically overlaid the co-expression networks to identify specific and shared correlations as well as relations already described in scientific literature. Additionally, in a pathway-level analysis, we overlaid node and edge sets from coexpression networks against pathway knowledge to identify biological processes that are related to specific subcontexts or groups of them. Finally, we have released our data and scripts at https:// zenodo. org/ record/ 58317 86 and https:// github. com/ ContN eXt/, respectively and developed ContNeXt (https:// contn ext. scai. fraun hofer. de/), a web application to explore the networks generated in this work.
Author(s)
Queiroz Figueiredo, Rebeca
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Diaz del Ser, Sara
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Raschka, Tamara
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Hofmann-Apitius, Martin
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Tom Kodamullil, Alpha
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Mubeen, Sarah
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Domingo Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Zeitschrift
BMC bioinformatics. Online journal
Project(s)
Modellierung von Komorbiditäts-Prozessen durch integratives, maschinelles Transfer-Lernen für psychiatrische Erkrankungen. TP3 System-Medizinisches Wissen und Mechanismen
Funder
Bundesministerium für Bildung und Forschung -BMBF-
DOI
10.1186/s12859-022-04765-0
File(s)
contnext.pdf (3.03 MB)
Language
English
google-scholar
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Tags
  • Transcriptomic

  • Biological context

  • Co-expression network...

  • Gene expression

  • Network biology

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022