• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production
 
  • Details
  • Full
Options
2024
Journal Article
Title

Enabling Federated Learning Services Using OPC UA, Linked Data and GAIA-X in Cognitive Production

Abstract
Value creation in production is based on collaboration of different stakeholders and requires the secure and sovereign exchange of knowledge. Today, knowledge has mostly been built up individually and is only exchanged in a proprietary manner. This paper presents an exemplary pipeline for federated services in cross-domain and cross-company value creation networks for cognitive production. On the example of collaboratively training of a federated machine learning model, machine tool lifetime is predicted in industrial manufacturing for high-end operating resources (high-quality cutting tools). From the shop floor to the cloud, all service relevant information is structured using existing digital twin standards and a linked data approach. In particular, the Industry 4.0 Asset Administration Shell (AAS) and OPC UA are used for collecting and referencing operational and engineering data. GAIA-X connectors transfer the service relevant data through a shared data space. The solution enables intelligent analysis and decision-making under the prioritization of data sovereignty and transparency and, therefore, acts as an enabler for future collaborative, data-driven manufacturing applications.
Author(s)
Friedrich, Christian  orcid-logo
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Vogt, Stefan  
Hochschule für Technik und Wirtschaft, Technische Universität Dresden
Rudolph, Franziska
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Patolla, Paul  
Hochschule für Technik und Wirtschaft Dresden – University of Applied Sciences
Grützmann, Jossy Milagros
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Hohmeier, Orlando
Richter, Martin
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Wenzel, Ken  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Reichelt, Dirk  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Ihlenfeldt, Steffen  
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Journal
Journal of Machine Engineering  
Open Access
DOI
10.36897/jme/188618
Language
English
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU  
Keyword(s)
  • Industry 4.0

  • Digital Manufacturing

  • Data Spaces

  • cognitive production

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024