• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. A Dimension-adaptive Combination Technique for Uncertainty Quantification
 
  • Details
  • Full
Options
April 12, 2022
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

A Dimension-adaptive Combination Technique for Uncertainty Quantification

Title Supplement
Published on arXiv
Abstract
We present an adaptive algorithm for the computation of quantities of interest involving the solution of a stochastic elliptic PDE where the diffusion coefficient is parametrized by means of a Karhunen-Loève expansion. The approximation of the equivalent parametric problem requires a restriction of the countably infinite-dimensional parameter space to a finite-dimensional parameter set, a spatial discretization and an approximation in the parametric variables. We consider a sparse grid approach between these approximation directions in order to reduce the computational effort and propose a dimension-adaptive combination technique. In addition, a sparse grid quadrature for the high-dimensional parametric approximation is employed and simultaneously balanced with the spatial and stochastic approximation. Our adaptive algorithm constructs a sparse grid approximation based on the benefit-cost ratio such that the regularity and thus the decay of the Karhunen-Loève coefficients is not required beforehand. The decay is detected and exploited as the algorithm adjusts to the anisotropy in the parametric variables. We include numerical examples for the Darcy problem with a lognormal permeability field, which illustrate a good performance of the algorithm: For sufficiently smooth random fields, we essentially recover the rate of the spatial discretization as asymptotic convergence rate with respect to the computational cost.
Author(s)
Seidler, Uta
sl-0
Griebel, Michael  
Univ. Bonn, Institut für Numerische Simulation  
DOI
10.48550/arXiv.2204.05574
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • parametric PDEs

  • high-dimensional approximation

  • uncertainty quantification

  • lognormal diffu sion coefficient

  • truncated Karhunen-Loève expansion

  • anisotropic sparse approximation

  • adaptive sparse grids

  • combination technique

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024