• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Multi-Kernel Polar Codes versus Classical Designs with Different Rate-Matching Approaches
 
  • Details
  • Full
Options
2021
Journal Article
Titel

Multi-Kernel Polar Codes versus Classical Designs with Different Rate-Matching Approaches

Abstract
Polar codes, which have been proposed as a family of linear block codes, has garnered a lot of attention from the scientific community, owing to their low-complexity implementation and provably capacity-achieving capability. Thus, they have been proposed to be used for encoding information on the control channels in the upcoming 5G wireless networks. The basic approach introduced by Arikan in his landmark paper to polarize bit channels of equal capacities to those of unequal capacities can be used to design only codewords of length N=2n, which is a major limitation when codewords of different lengths are required for the underlying applications. In the predecessor paper, this aspect was partially addressed by using a 3×3 kernel circuit (used to generate codewords of length M=3m), along with downsizing techniques such as puncturing and shortening to asses the optimal design and resizing techniques based on the underlying system parameters. In this article, we extend this research to include the assessment of multi-kernel rate-matched polar codes for applicability over a much wider range of codeword lengths.
Author(s)
Saha, S.
Adrat, M.
Zeitschrift
Electronics. Online journal
Thumbnail Image
DOI
10.3390/electronics10141717
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022