• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Deformation at ambient and high temperature of in situ Laves phases-ferrite composites
 
  • Details
  • Full
Options
2014
Journal Article
Titel

Deformation at ambient and high temperature of in situ Laves phases-ferrite composites

Abstract
The mechanical behavior of a Fe80Zr10Cr10 alloy has been studied at ambient and high temperature. This Fe 80Zr10Cr10 alloy, whoose microstructure is formed by alternate lamellae of Laves phase and ferrite, constitutes a very simple example of an in situ CMA phase composite. The role of the Laves phase type was investigated in a previous study while the present work focuses on the influence of the microstructure length scale owing to a series of alloys cast at different cooling rates that display microstructures with Laves phase lamellae width ranging from 50 nm to 150 nm. Room temperature compression tests have revealed a very high strength (up to 2 GPa) combined with a very high ductility (up to 35%). Both strength and ductility increase with reduction of the lamella width. High temperature compression tests have shown that a high strength (900 MPa) is maintained up to 873 K. Microstructural study of the deformed samples suggests that the confinement of dislocations in the ferrite lamellae is responsible for strengthening at both ambient and high temperature. The microstructure scale in addition to CMA phase structural features stands then as a key parameter for optimization of mechanical properties of CMA in situ composites.
Author(s)
Donnadieu, P.
Pohlmann, C.
Scudino, S.
Blandin, J.-J.
Babu Surreddi, K.
Eckert, J.
Zeitschrift
Science and technology of advanced materials
Thumbnail Image
DOI
10.1088/1468-6996/15/3/034801
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022