Options
2021
Journal Article
Title
Einsatz von Maschinellem Lernen für die Vorhersage von Stress am Beispiel der Logistik
Other Title
Use of machine learning for the prediction of stress using the example of logistics
Abstract
Stress und seine komplexen Wirkungen werden bereits seit Anfang des 20. Jahrhunderts erforscht. Die vielfältigen psychischen und physischen Stressoren in der Arbeitswelt können in Summe zu Störungen des Organismus und zu Erkrankungen führen. Da die Ausprägung körperlicher und subjektiver Folgen von Stress individuell unterschiedlich ist, lassen sich keine absoluten Grenzwerte ermitteln. Zur Erforschung der systematischen Mustererkennung physiologischer und subjektiver Stressparameter sowie einer Stressvorhersage, werden in dem vorliegenden Beitrag Methoden des maschinellen Lernens (ML) eingesetzt. Als praktischer Anwendungsfall dient die Logistikbranche, in der Belastungsfaktoren häufig in der Tätigkeit und der Arbeitsorganisation begründet liegen. Ein Gestaltungselement bei der Prävention von Stress ist die Arbeitspause. Mit ML-Methoden wird untersucht, inwieweit Stress auf Basis physiologischer und subjektiver Parameter vorhergesagt werden kann, um Pausen individuell zu empfehlen. Im Beitrag wird der Zwischenstand einer Softwarelösung für ein dynamisches Pausenmanagement für die Logistik vorgestellt.
;
Stress and its complex effects have been researched since the beginning of the 20th century. The manifold psychological and physical stressors in the world of work can, in sum, lead to disorders of the organism and to illness. Since the physical and subjective consequences of stress vary individually, no absolute threshold values can be determined. Machine learning (ML) methods are used in this article to research the systematic recognition of patterns of physiological and subjective stress parameters and to predict stress. The logistics sector serves as a practical application case in which stress factors are often rooted in the activity and work organisation. One design element of the prevention of stress is the work break. ML methods are used to investigate the extent to which stress can be predicted on the basis of physiological and subjective parameters in order to recommend breaks individually. The article presents the interim status of a software solution for dynamic break management for logistics.
Author(s)