• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models
 
  • Details
  • Full
Options
2016
Journal Article
Title

Multiscale modeling of macroscopic and microscopic residual stresses in metal matrix composites using 3D realistic digital microstructure models

Abstract
This work presents a hierarchical multiscale method for predicting accurately and efficiently the macroscopic and microscopic residual stresses (RSes) in MMCs based on large-size realistic digital microstructure models. Effects of various conditions on the multiscale modeling are systematically studied. Results indicate that the hierarchical multiscale model shows both a good self-consistency and a good accuracy. Compared with the kinematic uniform boundary conditions, the static uniform boundary conditions lead to more accurate prediction of the thermal misfit RS. The size of the volume element has significant effects on the predicted values of the thermal misfit RS. The hierarchical multiscale model gains significant advantages over the hybrid-semiconcurrent one with respect to both computational efficiency and computer memory cost. The local fluctuation profiles and total variations of the total RS are dominated by those of the thermal misfit RS at the microscale and by those of the macroscopic RS at the macroscale, respectively.
Author(s)
Zhang, X.X.
Xiao, B.L.
Andrä, H.
Ma, Z.Y.
Journal
Composite structures  
DOI
10.1016/j.compstruct.2015.10.045
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024