Options
2024
Journal Article
Title
Benchmarking reservoir computing for residential energy demand forecasting
Abstract
In the energy sector, accurate demand forecasts are vital but often limited by the available computational power. Reservoir computing (RC) or echo-state networks excel in chaotic time series prediction, with lower computational requirements compared to other recurrent network based methods like LSTMs. Next-generation reservoir computing (NG-RC) is a newer, more efficient variant of classical RC originating from nonlinear vector autoregression and therefore missing the randomness of classical RC. In our study, we evaluate RC and NG-RC for day-ahead energy demand predictions on four data sets and compare it to LSTMs and a naive persistence approach. We find that NG-RC outperforms all other methods when considering the root mean squared error on all data sets but struggles with very small or zero demands. Additionally, it offers a very computationally effective hyperparameter optimization and excels in replicating the inherent volatility and the erratic behavior of energy demands.
Author(s)