• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Online QoS estimation for vehicular radio environments
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Online QoS estimation for vehicular radio environments

Abstract
Quality of service (QoS) estimation is a key enabler in wireless networks. This has been facilitated by the increasing capabilities of machine learning (ML). However, ML algorithms often underperform when presented with non-stationary data, which is typically the case for radio environments. In such environments, ML schemes might require extra signaling for retraining. In this paper, we propose an approach to online QoS estimation, where a trained model can be taken as a base estimator and fine-tuned with information from the user equipment (UE) and the cell itself. The proposed approach is based on the Adaptive Random Forest (ARF) algorithm, which uses streaming data and reacts on changes under concept drift, i.e., to changes in the data's statistical properties. This effectively allows to retrain parts of the ML model as vehicular UEs visit diverse radio environments. We evaluate this method with real data from an extensive measurement campaign in a cellular test network that covered diverse radio environments.
Author(s)
Hernangómez Herrero, Rodrigo
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Palaios, Alexandros
Guruvayoorappan, Gayathri
Kasparick, Martin  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Ain, Noor Ul
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Stanczak, Slawomir  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Mainwork
30th European Signal Processing Conference, EUSIPCO 2022. Proceedings  
Project(s)
KI-gestützte Mobilfunksysteme für Mobilität in Industrie und Verkehr  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Conference
European Signal Processing Conference 2022  
DOI
10.23919/EUSIPCO55093.2022.9909612
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Keyword(s)
  • concept drift

  • online learning

  • quality of service

  • radio environments

  • random forests

  • vehicular networks

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024