• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Enhancing Interpretability of Vertebrae Fracture Grading using Human-interpretable Prototypes
 
  • Details
  • Full
Options
2024
Journal Article
Title

Enhancing Interpretability of Vertebrae Fracture Grading using Human-interpretable Prototypes

Abstract
Vertebral fracture grading classifies the severity of vertebral fractures, which is a challenging task in medical imaging and has recently attracted Deep Learning (DL) models. Only a few works attempted to make such models human-interpretable despite the need for transparency and trustworthiness in critical use cases like DL-assisted medical diagnosis. Moreover, such models either rely on post-hoc methods or additional annotations. In this work, we propose a novel interpretable-by-design method, ProtoVerse, to find relevant sub-parts of vertebral fractures (prototypes) that reliably explain the model’s decision in a human-understandable way. Specifically, we introduce a novel diversity-promoting loss to mitigate prototype repetitions in small datasets with intricate semantics. We have experimented with the VerSe’19 dataset and outperformed the existing prototype-based method. Further, our model provides superior interpretability against the post-hoc method. Importantly, expert radiologists validated the visual interpretability of our results, showing clinical applicability.
Author(s)
Sinhamahapatra, Poulami  
Fraunhofer-Institut für Kognitive Systeme IKS  
Shit, Suprosanna
Technische Universität München  
Sekuboyina, Anjany
Technische Universität München  
El Husseini, Malek
Technische Universität München  
Schinz, David
Technische Universität München  
Lenhart, Nicolas
Technische Universität München  
Menze, Bjoern
University of Zurich
Kirschke, Jan
Technische Universität München  
Roscher, Karsten  
Fraunhofer-Institut für Kognitive Systeme IKS  
Guennemann, Stephan
Technische Universität München  
Journal
Journal of Machine Learning for Biomedical Imaging  
Project(s)
IKS-Ausbauprojekt  
Biomechanical modelling and computational imaging to identify different causes of back pain in large epidemiological studies  
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie  
European Commission  
Open Access
File(s)
Download (12.68 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.59275/j.melba.2024-258b
10.24406/publica-3509
Additional link
Full text
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Fraunhofer Group
Fraunhofer-Verbund IUK-Technologie  
Keyword(s)
  • machine learning

  • ML

  • interpretability

  • explainability

  • vertebral fracture

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024