• English
  • Deutsch
  • Log In
    Password Login
    Have you forgotten your password?
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Recent advances in adsorption heat transformation focusing on the development of adsorbent materials
 
  • Details
  • Full
Options
2019
Journal Article
Title

Recent advances in adsorption heat transformation focusing on the development of adsorbent materials

Abstract
Adsorption heat transformation (AHT) is an environmentally friendly energy-saving process applied for air conditioning purposes, that is, either for cooling (including also ice making and refrigeration), or heating. AHT is based on the cycling adsorption and desorption of a working fluid in a porous material. When the working fluid is driven to evaporation by the active empty sorbent material, the required heat of evaporation translates into useful cooling in thermally driven adsorption chillers. Driving heat regenerates the empty sorbent material through desorption of the working fluid. The heat of adsorption in the sorbent material and the heat of condensation of the working fluid can be used in the adsorption heat-pumping mode. Thus, adsorption heat transformation contributes to energy-saving technologies. Adsorbent development plays a critical role for the improvement of AHT technologies. Besides silica gel and zeolites as adsorbent materials, which are up to now used in the commercially available AHT devices; especially metal-organic frameworks (MOFs) are getting more attentions in recent years. Composite materials from salts with silica gels, zeolites and MOFs as well as activated carbons have also been researched to contribute to AHT technologies. Reduction of installation/production cost and enhancement of the efficiency of AHT devices need to be achieved to increase the wider usage of AHT.
Author(s)
Hastürk, E.
Heinrich-Heine-Universität, Düsseldorf  
Ernst, Sebastian-Johannes
Fraunhofer-Institut für Solare Energiesysteme ISE  
Janiak, Christoph
Heinrich-Heine-Universität, Düsseldorf  
Journal
Current opinion in chemical engineering  
DOI
10.1016/j.coche.2018.12.011
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024