• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Machine-learning based VMAF prediction for HDR video content
 
  • Details
  • Full
Options
2023
Conference Paper
Title

Machine-learning based VMAF prediction for HDR video content

Abstract
This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.
Author(s)
Müller, Christoph
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Steglich, Stephan  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Groß, Sandra
RTL Technology
Kremer, Paul
RTL Technology
Mainwork
Proceedings of the 14th ACM Multimedia Systems Conference, MMSys '23  
Conference
Multimedia Systems Conference 2023  
Open Access
DOI
10.1145/3587819.3593941
10.24406/publica-1740
File(s)
Machine_learning_based_VMAF_prediction.pdf (1.11 MB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • VMAF

  • video quality

  • HDR

  • neural networks

  • machine learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024