• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. LLM-generated tips rival expert-created tips in helping students answer quantum-computing questions
 
  • Details
  • Full
Options
2025
Journal Article
Title

LLM-generated tips rival expert-created tips in helping students answer quantum-computing questions

Abstract
Alleviating high workloads for teachers is crucial for continuous high quality education. To evaluate if Large Language Models (LLMs) can alleviate this problem in the quantum computing domain, we conducted two complementary studies exploring the use of GPT-4 to automatically generate tips for students. (1) A between-subject survey in which students (N = 46) solved four multiple-choice quantum computing questions with either the help of expert-created or LLMgenerated tips. To correct for possible biases, we additionally introduced two deception conditions. (2) Experienced educators and students (N = 23) directly compared the LLM-generated and expert-created tips. Our results show that the LLM-generated tips were significantly more helpful and pointed better towards relevant concepts while also giving away more of the answers. Furthermore, we found that participants in the first study performed significantly better in answering the quantum computing questions when given tips labeled as LLM-generated, even if they were expert-created. This points towards a placebo effect induced by the participants’ biases for LLM-generated content. Ultimately, we contribute that LLM-generated tips can be used instead of expert tips to support teaching of quantum computing basics.
Author(s)
Krupp, Lars  
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Bley, Jonas  
Technische Universität Kaiserslautern
Gobbi, Isacco
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Geng, Alexander
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Müller, Sabine
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Suh, Sungho  
German Research Centre for Artificial Intelligence, KIST Europe, Korea University, Samsung Electromechanics, Seoul National University, Technische Universität Kaiserslautern
Moghiseh, Ali  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Castaneda Medina, Arcesio
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Bartsch, Valeria
Fraunhofer-Institut für Materialfluss und Logistik IML  
Widera, Artur  
Ott, Herwig  
Lukowicz, Paul  
Karolus, Jakob  
German Research Centre for Artificial Intelligence, Ludwig-Maximilians-Universität München, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, TU Darmstadt, University of Stuttgart
Kiefer-Emmanouilidis, Maximilian
Journal
EPJ Quantum Technology  
Open Access
DOI
10.1140/epjqt/s40507-025-00334-5
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Materialfluss und Logistik IML  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Quantencomputing

  • LLMs

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024