• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Confinement of Bose-Einstein magnon condensates in adjustable complex magnetization landscapes
 
  • Details
  • Full
Options
2022
Journal Article
Title

Confinement of Bose-Einstein magnon condensates in adjustable complex magnetization landscapes

Abstract
Coherent wave states such as Bose–Einstein condensates (BECs), which spontaneously form in an overpopulated magnon gas even at room temperature, have considerable potential for wave-based computing and information processing at microwave frequencies. The ability to control the transport properties of magnon BECs plays an essential role in their practical use. Here, we demonstrate the spatiotemporal control of the BEC density distribution through the excitation of magnon supercurrents in an inhomogeneously magnetized yttrium iron garnet film. The BEC is created by microwave parametric pumping and probed by Brillouin light scattering spectroscopy. The desired magnetization profile is prepared by heating the film with optical patterns projected onto its surface using a phase-based wavefront modulation technique. Specifically, we observe a pronounced spatially localized magnon accumulation caused by magnon supercurrents flowing toward each other originating in two heated regions. This accumulation effect increases the BEC lifetime due to the constant influx of condensed magnons into the confinement region. The shown approach to manipulate coherent waves provides an opportunity to extend the lifetime of freely evolving magnon BECs, create dynamic magnon textures, and study the interaction of magnon condensates formed in different regions of the sample.
Author(s)
Schweizer, Matthias R.
Kreil, Alexander J.E.
Freymann, Georg von  
Technische Universität Kaiserslautern  
Hillebrands, Burkard
Serga, Alexander A.
Journal
Journal of applied physics  
Open Access
DOI
10.1063/5.0123233
Additional full text version
Landing Page
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024