• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Biofabrication of cell-loaded 3D spider silk constructs
 
  • Details
  • Full
Options
2015
Journal Article
Title

Biofabrication of cell-loaded 3D spider silk constructs

Abstract
Biofabrication is an emerging and rapidly expanding field of research in which additive manufacturing techniques in combination with cell printing are exploited to generate hierarchical tissue-like structures. Materials that combine printability with cytocompatibility, so called bioinks, are currently the biggest bottleneck. Since recombinant spider silk proteins are non-immunogenic, cytocompatible, and exhibit physical crosslinking, their potential as a new bioink system was evaluated. Cell-loaded spider silk constructs can be printed by robotic dispensing without the need for crosslinking additives or thickeners for mechanical stabilization. Cells are able to adhere and proliferate with good viability over at least one week in such spider silk scaffolds. Introduction of a cell-binding motif to the spider silk protein further enables fine-tuned control over cell-material interactions. Spider silk hydrogels are thus a highly attractive novel bioink for biofabrication.
Author(s)
Schacht, Kristin
Jüngst, Tomasz
Schweinlin, Matthias
Ewald, Andrea
Groll, Jürgen
Scheibel, Thomas
Journal
Angewandte Chemie. International edition  
DOI
10.1002/anie.201409846
Language
English
Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024