• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A computational framework for the interplay between delamination and wrinkling in functionally graded thermal barrier coatings
 
  • Details
  • Full
Options
2016
Journal Article
Titel

A computational framework for the interplay between delamination and wrinkling in functionally graded thermal barrier coatings

Abstract
Stiff films bonded to compliant substrates are used in a wide range of technological applications and especially in thermal barrier coatings (TBC). Thin films can be made of Functionally Graded Materials (FGMs) with a heterogeneous composition that usually range from a metallic to a ceramic phase. Aiming at investigating the phenomenon of delamination of thin FGM layers from compressed elastic substrates, a fully 3D nonlinear computational framework combining nonlinear fracture mechanics based on a novel interface element formulation for large displacements and a solid shell finite element to model the thin film is proposed. A comprehensive numerical analysis of delamination in TBCs is carried out, paying a special attention to the interplay between fracture and wrinkling instabilities. Results of the computations are also compared with benchmark 2D semi-analytical results, showing good accuracy of the proposed method that can be applied to general 3D configurations that are difficult to address by semi-analytical approaches.
Author(s)
Reinoso, J.
Paggi, M.
Rolfes, R.
Zeitschrift
Computational materials science
Project(s)
CA2PVM
Funder
European Commission EC
Thumbnail Image
DOI
10.1016/j.commatsci.2015.08.031
Language
English
google-scholar
Fraunhofer-Institut für Windenergiesysteme IWES
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022