• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Towards atomatic feature vector optimization for multimedia applications
 
  • Details
  • Full
Options
2008
Conference Paper
Titel

Towards atomatic feature vector optimization for multimedia applications

Abstract
We systematically evaluate a recently proposed method for unsupervised discrimination power analysis for feature se- lection and optimization in multimedia applications. A series of experiments using real and synthetic benchmark data is conducted, the results of which indicate the suitability of the method for unsupervised feature selection and optimization. We present an approach for generating synthetic feature spaces of varying discrimination power, modelling main characteristics from real world feature vector extractors. A simple, yet powerful visualization is used to communicate the results of the automatic analysis to the user.
Author(s)
Schreck, Tobias
TU Darmstadt GRIS
Fellner, Dieter W.
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Keim, Daniel
Univ. Konstanz
Hauptwerk
23rd Annual ACM Symposium on Applied Computing 2008. Proceedings
Konferenz
Symposium on Applied Computing (SAC) 2008
Thumbnail Image
DOI
10.1145/1363686.1363964
Language
English
google-scholar
Fraunhofer-Institut für Graphische Datenverarbeitung IGD
Tags
  • self-organizing map

  • feature selection

  • Feature Description

  • discriminate analysis...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022