• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Procalcitonin impairs liver cell viability and function in vitro: A potential new mechanism of liver dysfunction and failure during sepsis?
 
  • Details
  • Full
Options
2017
Journal Article
Title

Procalcitonin impairs liver cell viability and function in vitro: A potential new mechanism of liver dysfunction and failure during sepsis?

Abstract
Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A) were exposed to 0.01-50 ng/mL procalcitonin for 2 x 72h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey's test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P < 0.05) and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P < 0.001). Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients.
Author(s)
Sauer, M.
Doß, S.
Ehler, J.
Mencke, T.
Wagner, N.-M.
Journal
BioMed research international  
Open Access
Link
Link
DOI
10.1155/2017/6130725
Language
English
Fraunhofer-Institut für Zelltherapie und Immunologie IZI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024