• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Multiscale modeling for ferroelectric materials: A transition from the atomic level to phase-field modeling
 
  • Details
  • Full
Options
2011
Journal Article
Title

Multiscale modeling for ferroelectric materials: A transition from the atomic level to phase-field modeling

Abstract
To link the atomic level and the mesoscale within a knowledge-based multiscale modeling approach for ferroelectric materials, a method is suggested to transfer results from first-principles calculations into a phase-field model. DFT calculations and atomistic simulations are applied and provide a set of intrinsic and extrinsic material properties for PbTiO3 and tetragonal Pb(Zr0.5Ti0.5)O3. The Helmholtz free energy of the phase-field model that contains all crystallographic and domain wall information is discussed in detail, and a sensitivity analysis is performed to identify the coefficients of the energy function. Then, a method is developed to adjust the coefficients of the Helmholtz free energy solely based on results from first-principles calculations. Full sets of adjusted energy coefficients for PbTiO3 and Pb(Zr0.5Ti0.5)O3 are presented and discussed, as well the limits of the suggested adjustment method.
Author(s)
Völker, B.
Marton, P.
Elsässer, C.
Kamlah, M.
Journal
Continuum Mechanics and Thermodynamics  
DOI
10.1007/s00161-011-0188-7
Language
English
Fraunhofer-Institut für Werkstoffmechanik IWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024