• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Attribute-based identification processes for autonomous manufacturing systems - an approach for the integration in factory planning methods
 
  • Details
  • Full
Options
2019
Journal Article
Title

Attribute-based identification processes for autonomous manufacturing systems - an approach for the integration in factory planning methods

Abstract
The demand for customer innovated products is rising. In order to deal with the resulting complexity, the factory planner can employ autonomous manufacturing systems, in which objects are enabled to coordinate themselves through production systems. A fundamental requirement for this kind of control is the identification of objects. In this approach, attribute-based identification is focused on decreasing the identification costs. Instead of using an ID, an object type is recognised by its attributes. The integration of such a system, especially the required sensors, in an existing plant is difficult. Therefore, planning and development should take place within the factory planning.
Author(s)
Kiefer, Lucas
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Voit, Patrick  
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Richter, Christoph
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Reinhart, Gunther  
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Journal
Procedia CIRP  
Conference
Conference on Intelligent Computation in Manufacturing Engineering (ICME) 2018  
Open Access
DOI
10.1016/j.procir.2019.02.047
Language
English
Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV  
Keyword(s)
  • Produktionsplanung

  • Fabrikplanung

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024