• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. 3d object classification and parameter estimation based on parametric procedural models
 
  • Details
  • Full
Options
2018
Journal Article
Title

3d object classification and parameter estimation based on parametric procedural models

Abstract
Classifying and gathering additional information about an unknown 3D objects is dependent on having a large amount of learning data. We propose to use procedural models as data foundation for this task. In our method we (semi-)automatically define parameters for a procedural model constructed with a modeling tool. Then we use the procedural models to classify an object and also automatically estimate the best parameters. We use a standard convolutional neural network and three different object similarity measures to estimate the best parameters at each degree of detail. We evaluate all steps of our approach using several procedural models and show that we can achieve high classification accuracy and meaningful parameters for unknown objects.
Author(s)
Getto, R.
Fina, K.
Jarms, L.
Kuijper, A.
Fellner, D.W.
Journal
Journal of WSCG  
DOI
10.24132/CSRN.2018.2801.2
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024