• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Hybrid classification - using axis-parallel and oblique subdivisions of the attribute space
 
  • Details
  • Full
Options
1995
Conference Paper
Title

Hybrid classification - using axis-parallel and oblique subdivisions of the attribute space

Other Title
Hybride Klassifikation - Benutzung achsenparalleler und schiefer Unterteilungen des Attributraumes
Abstract
This paper describes the hybrid algorithm DIPOL-DT which uses the strengths of standard decision tree algorithms and piecewise linear classifiers because at every level of learning it chooses the appropriate subdivision of the attribute space: a split with hyperplanes in general position or an axis-parallel split. The proposed method combines two existing algorithms - the piecewise linear classification algorithm DIPOL and the decision tree algorithm CAL5. To some extent the strength of each individual method complements the weaknesses of the other.
Author(s)
Schulmeister, B.
Bleich, M.
Mainwork
Machine learning. 8th European Conference on Machine Learning  
Conference
European Conference on Machine Learning (ECML) 1995  
Language
English
EPO  
Keyword(s)
  • classification

  • decision tree

  • Entscheidungsbaum

  • Klassifikation

  • machine learning

  • maschinelles Lernen

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024