• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Visual component analysis
 
  • Details
  • Full
Options
2004
Conference Paper
Title

Visual component analysis

Abstract
We propose to integrate information visualization techniques with factor analysis. Specifically, a principal direction derived from a principal component analysis (PCA) of the data is displayed together with the data in a scatterplot matrix. The direction can be adjusted to coincide with visual trends in the data. Projecting the data onto the orthogonal subspace allows determining the next direction. The set of directions identified in this way forms an orthogonal space, which represents most of the variation in the data. We call this process visual component analysis (VCA). Furthermore, it is quite simple to integrate VCA with clustering. The user fits poly-lines to the displayed data, and the poly-lines implicitly define clusters. Per-cluster projection leads to the definition of per-cluster components.
Author(s)
Müller, W.
PH Ludwigsburg
Alexa, M.
TU Darmstadt GRIS
Mainwork
Data Visualization 2004. Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, VisSym 2004  
Conference
Symposium on Visualization (VisSym) 2004  
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • visual data mining

  • information visualization

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024