• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Anderes
  4. Estimating the Value-at-Risk by Temporal VAE
 
  • Details
  • Full
Options
2021
Paper (Preprint, Research Paper, Review Paper, White Paper, etc.)
Title

Estimating the Value-at-Risk by Temporal VAE

Title Supplement
Published on arXiv
Abstract
Estimation of the value-at-risk (VaR) of a large portfolio of assets is an important task for financial institutions. As the joint log-returns of asset prices can often be projected to a latent space of a much smaller dimension, the use of a variational autoencoder (VAE) for estimating the VaR is a natural suggestion. To ensure the bottleneck structure of autoencoders when learning sequential data, we use a temporal VAE (TempVAE) that avoids an auto-regressive structure for the observation variables. However, the low signal to-noise ratio of financial data in combination with the auto-pruning property of a VAE typically makes the use of a VAE prone to posterior collapse. Therefore, we propose to use annealing of the regularization to mitigate this effect. As a result, the auto-pruning of the TempVAE works properly which also results in excellent estimation results for the VaR that beats classical GARCH-type and historical simulation approaches when applied to real data.
Author(s)
Sicks, Robert
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Grimm, Stefanie  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Korn, Ralf  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Richert, Ivo
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
DOI
10.48550/arXiv.2112.01896
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Keyword(s)
  • Value-at-Risk

  • variational autoencoders

  • recurrent neural networks

  • risk management

  • auto-pruning

  • posterior collapse

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024