• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. FantastIC4: A Hardware-Software Co-Design Approach for Efficiently Running 4Bit-Compact Multilayer Perceptrons
 
  • Details
  • Full
Options
2021
Journal Article
Title

FantastIC4: A Hardware-Software Co-Design Approach for Efficiently Running 4Bit-Compact Multilayer Perceptrons

Abstract
With the growing demand for deploying Deep Learning models to the "edge", it is paramount to develop techniques that allow to execute state-of-the-art models within very tight and limited resource constraints. In this work we propose a software-hardware optimization paradigm for obtaining a highly efficient execution engine of deep neural networks (DNNs) that are based on fully-connected layers. The work's approach is centred around compression as a means for reducing the area as well as power requirements of, concretely, multilayer perceptrons (MLPs) with high predictive performances. Firstly, we design a novel hardware architecture named FantastIC4, which (1) supports the efficient on-chip execution of multiple compact representations of fully-connected layers and (2) minimizes the required number of multipliers for inference down to only 4 (thus the name). Moreover, in order to make the models amenable for efficient execution on FantastIC4, we introduce a novel entropy-constrained training method that renders them to be robust to 4bit quantization and highly compressible in size simultaneously. The experimental results show that we can achieve throughputs of 2.45 TOPS with a total power consumption of 3.6W on a Virtual Ultrascale FPGA XCVU440 device implementation, and achieve a total power efficiency of 20.17 TOPS/W on a 22nm process ASIC version. When compared to other state-of-the-art accelerators designed for the Google Speech Command (GSC) dataset, FantastIC4 is better by 51× in terms of throughput and 145× in terms of area efficiency (GOPS/mm 2).
Author(s)
Wiedemann, Simon
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Shivapakash, Suhas
Becking, Daniel
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Wiedemann, Pablo
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Samek, Wojciech  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Gerfers, Friedel
Wiegand, Thomas  
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
Journal
IEEE open journal of circuits and systems  
Open Access
DOI
10.1109/OJCAS.2021.3083332
Language
English
Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024