• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Scopus
  4. Simulation-based Learning of the Peg-in-Hole Process Using Robot-Skills
 
  • Details
  • Full
Options
2022
Conference Paper
Title

Simulation-based Learning of the Peg-in-Hole Process Using Robot-Skills

Abstract
Increasingly volatile markets challenge companies and demand flexible production systems that can be quickly adapted to new conditions. Machine Learning has proven to show significant potential in supporting the human operator during the time-consuming and complex task of robot pro-gramming by identifying relevant parameters of the underlying robot control program. We present a solution to learn these parameters for contact-rich, force-controlled assembly tasks from a simulation using hardware-independent robot skills. We show that successful learning and real-world execution are possible even under process deviation and tolerances utilizing the designed learning system. We present learning skill param-eters as high-level robot control, evaluation and comparison of extensive simulations, and preliminary experiments on a physical robot test-bed. The developed solution approach is evaluated and discussed using the Peg-in-Hole process, a typical benchmark process in force-controlled assembly.
Author(s)
Lämmle, Arik  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Tenbrock, Philipp  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Balint, Balazs Andras  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Nägele, Frank  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Kraus, Werner  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Vancza, Jozsef
Huber, Marco  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022  
Project(s)
Centre of Excellence in Production Informatics and Control  
Funder
European Commission  
Conference
International Conference on Intelligent Robots and Systems 2022  
Open Access
DOI
10.1109/IROS47612.2022.9982212
Language
English
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • Deep Reinforcement Learning

  • Robot Skills

  • Simulation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024