• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Second FRCSyn-onGoing: Winning Solutions and Post-challenge Analysis to Improve Face Recognition with Synthetic Data
 
  • Details
  • Full
Options
2025
Journal Article
Title

Second FRCSyn-onGoing: Winning Solutions and Post-challenge Analysis to Improve Face Recognition with Synthetic Data

Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
Author(s)
DeAndres-Tame, Ivan
Universidad Autónoma de Madrid
Tolosana, Ruben
Universidad Autónoma de Madrid
Melzi, Pietro
Vera-Rodriguez, Ruben
Universidad Autónoma de Madrid
Kim, Minchul
Michigan State University
Rathgeb, Christian
Hochschule Darmstadt  
Liu, Xiaoming
Michigan State University
Gomez, Luis F.
Universidad Autónoma de Madrid
Morales, Aythami
Universidad Autónoma de Madrid
Fierrez, Julian
Universidad Autónoma de Madrid
Ortega-Garcia, Javier
Universidad Autónoma de Madrid
Zhong, Zhizhou
Fudan University
Huang, Yuge
Mi, Yuxi
Ding, Shouhong
Tencent Youtu Lab
Zhou, Shuigeng
Fudan University
He, Shuai
NetEase (China)
Fu, Lingzhi
NetEase (China)
Cong, Heng
NetEase (China)
Zhang, Rongyu
NetEase (China)
Xiao, Zhihong
NetEase (China)
Smirnov, Evgeny
ID R&D Inc.
Pimenov, Anton
ID R&D Inc.
Grigorev, Aleksei
ID R&D Inc.
Timoshenko, Denis
ID R&D Inc.
Mesfin Asfaw, Kaleb
Korea Advanced Institute of Science and Technology -KAIST-, Seoul  
Yaw Low, Cheng
Institute for Basic Science
Liu, Hao
China Telecom AI
Wang, Chuyi
China Telecom AI
Zuo, Qing
China Telecom AI
He, Zhixiang
China Telecom AI
Otroshi Shahreza, Hatef
Idiap Research Institute
George, Anjith
Idiap Research Institute
Unnervik, Alexander
Idiap Research Institute
Rahimi, Parsa
Idiap Research Institute
Marcel, Sébastien
Idiap Research Institute
Neto, Pedro C.
INESC TEC
Cardoso, Jaime S.
INESC TEC
Kolf, Jan Niklas  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Boutros, Fadi  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Huber, Marco  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Sequeira, Ana F.
INESC TEC
Atzori, Andrea
University of Cagliari
Fenu, Gianni
University of Cagliari
Marras, Mirko
University of Cagliari
Yu, Jiang
Samsung (China)
Štruc, Vitomir
University of Ljubljana  
Li, Zhangjie
Samsung (China)
Li, Jichun
Samsung (China)
Zhao, Weisong
IIE, CAS, China
Lei, Zhen
MAIS, CASIA, China
Zhu, Xiangyu
MAIS, CASIA, China
Zhang, Xiao-Yu
IIE, CAS, China
Biesseck, Bernardo
Universidade Federal do Paraná
Vidal, Pedro
Universidade Federal do Paraná
Coelho, Luiz
Unico
Granada, Roger
Unico
Menotti, David
Universidade Federal do Paraná
Journal
An international journal on information fusion  
Project(s)
Next Generation Biometric Systems  
Next Generation Biometric Systems  
Funder
Bundesministerium für Bildung und Forschung -BMBF-  
Hessisches Ministerium für Wissenschaft und Kunst -HMWK-  
Open Access
DOI
10.1016/j.inffus.2025.103099
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • Branche: Information Technology

  • Research Line: Computer vision (CV)

  • Research Line: Human computer interaction (HCI)

  • Research Line: Machine learning (ML)

  • LTA: Interactive decision-making support and assistance systems

  • LTA: Machine intelligence, algorithms, and data structures (incl. semantics)

  • LTA: Generation, capture, processing, and output of images and 3D models

  • Biometrics

  • Face recognition

  • Deep learning

  • Machine learning

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024